
The acceleration and diffusion of charged particles in a stochastic magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 1095

(http://iopscience.iop.org/0305-4470/13/3/041)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 04:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 1095-1099. Printed in Great Britain 

The acceleration and diffusion of charged particles in a 
stochastic magnetic field 

M L Mittal, Y S Prahalad and D Govinda Thirtha 
Department of Mathematics, Indian Institute of Technology, Bombay 400 076, India 

Received 2 November 1978, in final form 12 September 1979 

Abstract. The problem of acceleration and diffusion of charged particles in a stochastic 
magnetic field is investigated. The analysis of earlier authors has been generalised to take 
into account non-&correlated stochastic processes. Using Khasminskii’s limit theorem a 
rigorous analysis of the acceleration and diffusion of charged particles is presented. The 
results are obtained under very general conditions and are free from many limitations in the 
earlier work. Stochastic heating of the plasma is discussed briefly. 

1. Introduction 

The problem of the motion of charged particles in the presence of fluctuating elec- 
tromagnetic fields has attracted considerable attention in the past decade. This interest 
is largely due to the importance of the investigation in the explanation of energisation of 
cosmic rays and stochastic heating of plasmas. The state of the subject up to 1966 has 
been reviewed in depth by Schatzmann (1968) where he also explained the acceleration 
mechanism for a rarefied plasma. In such a plasma, since the number of charged 
particles is small, the mutual interaction between the particles can be ignored and each 
particle experiences separately the same force. Hall and Sturrock (1967) have analysed 
the diffusion and acceleration of charged particles in a turbulent magnetic field ignoring 
collective effects. Newmann and Sturrock (1969) have calculated the electrical 
conductivity for a rarefied plasma in the presence of a stochastic magnetic field, 
neglecting the collective behaviour of the particles. These authors, though using a 
turbulent magnetic field, make approximations whose degree of validity is unknown. 
This situatio,, is unavoidable as long as one deals with stochastic partial differential 
equations. Almost all the controlled approximate schemes developed by the leading 
exponents of stochastic equations, e.g. Papanicalou and Varadhan (1973), are not 
applicable in these analyses. Therefore, sooner or later, in all the analyses performed so 
far, &correlated processes (giving white noise as the power spectral density) are 
invoked. In the present paper, a simpler problem is analysed where the external 
stochastic field is assumed to be spatially uniform but fluctuating randomly with time. 
Using the limit theorem of Khasminskii (1966), a rigorous analysis of the motion of a 
single charged particle is investigated. 

Consider the motion of charged particles under the influence of an axially symmetric 
electromagnetic field given by 
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and 

where r is the position vector. 

fluctuating field is superposed, i.e. 
The magnetic field B consists of a strong DC field Bo, on which a weak randomly 

B =Bo(l +ef( r ) )& ( 2 )  

where E is a dimensionless parameter ( E  << 1) and f ( t )  is a stationary ergodic random 
function of time, differentiable in the mean square sense and bounded by unity. 

The equation of motion of a charged particle subjected to such an electromagnetic 
field is given by 

where no is the cyclotron frequency (=eBo/m). Note that the force is proportional to 
the position vector r. This has important ramifications in what follows. 

Introducing a new variable: 

equation (3) can be transformed into 

d2r+ Cl; 
-+-(I +ef(t)I2r+ = 0. dt2 4 

It should be emphasised that the above transformation does not in any way affect the 
stability of motion of the particle as f(r) is bounded for all t. 

For small values of E ,  equation (5) reduces to 

d2r+ R: 
7 + - ( 1 + 2 ~ f (  t ) )  r+ = 0. 
dt  4 

First a more convenient time scale is introduced and equation ( 6 )  is reduced to a 
non-dimensional form, using the correlation length 1 defined below. 

Let ( E f ( r ) )  = 0, (e2f(tl)f(t2)) = R( t l  - t2) and 1 = JT R ( T )  dr. 1 is called the correlation 
length and is assumed to be finite. Define a new non-dimensional time parameter: 

t' = t/l. 

Then r+ as a function of t' satisfies 

where 

As E is very small, it is possible to introduce two timescales, one the fast timescale 
determined by ab, and the other a slow timescale determined by e n ; .  The evolution of 
r+ can be split into a rapidly varying part determined by the frequency ab, and a slowly 
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varying amplitude and phase determined by E. With these ideas in mind, equation (7) 
can be cast into the form (Stratanovich and Romanovskii 1965): 

da+/dt’  = E ~ ( c ‘ )  sin 2@ (8) 

dO/dt‘= E W ~ ( ~ ~ ) ( ~ + C O S ~ @ )  (9) 

where rt = a+ cos @ and @ = $Qbt’+ 8. a+ is the slowly varying amplitude and 6’ is the 
slowly varying phase. 

These equations have been considered earlier in various contexts and certain 
conclusions can be drawn from them following Stratanovich’s method, vide Mittal and 
Prahalad (1977). r+ exceeds any value A with unit probability as t’+ CO if the power 
spectral density off ( t ‘ )  at Qo is non-zero. That is, the harmonic component of f ( t ’ )  at the 
cyclotron frequency transfers its energy to the gyration of the particle, sending the 
orbital radius to infinity. While this picture is physically very alluring, such a treatment 
is basically suspect, as it requires the right-hand sides of equations (8) and (9) to be 
stochastic processes with independent increments, rendering the solution process a+( t )  
and r+(t)  to be Markovian. This is possible if the correlation time of F(t’) is much smaller 
than the observation time. Mathematically, this corresponds to replacing r ( t ’ )  or f ( t )  by 
a 6-correlated stochastic process, which is in conflict with its differentiability property. 

Even if f ( t )  is not a 6-correlated process, using Khasminskii’s theorem (1966), it is 
possible to show that the solution process a+(t)  is indeed a Markov process and obeys a 
Kalmogrov forward equation with constant coefficients under very general conditions 
on the right-hand side of equations (8) and (9). This is done in the following way. 

Equations (8) and (9) are of the form: 

dzi/dt’ = EFi(z(t’), f ( t ’ ) ,  t’) (10) 
and are amenable to rigorous treatment, rendered possible by Khasminskii’s theorem 
(1966) given below. 

2. Khasminskii’s theorem 

Let z ( t )  be a stochastic process with values in R”, defined by the equation 

dzi(t)ldt = cFi(Z(t) ,  f ( t ) ,  t )  (11) 
where f ( t )  is a R” valued stochastic process and Fi are functions of t and f ( t ) ,  measurable 
for fixed z and (Fi(z, f ( t ) ,  t ) )  = 0. Furthermore, for some O <  c <CO, 

uniformly in z ,  f ( t )  and t for i, j ,  k = 1,. . . , n. Also the limits 

and 

exist uniformly in to and z .  Further, if f ( t )  is strongly mixing, then on the interval 
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2 0 s E t < T~ (an arbitrary positive number), the solution process z(”(E2t) of equation 
(1 1) converges as E +. 0 to a Markov process to(E2t) which is continuous with probability 
1. This has the generator given by 

n n a  

L , j = l  az, azj j = l  azi 
+ 1 bj-. 

a2 
L =  1 ai,- 

Note that the right-hand sides of equations (8) and (9) satisfy all the conditions of the 
theorem. Therefore, it is possible to calculate the generator of the stochastic processes 
a+(t’) and 8(t‘) which, after a straightforward calculation, leads to 

where 

R d2 
c = - Im S(Rb) ab 

16 
b =-Re S(Rb) R b2 

16 
a = -S(O) 

16 

R ( a )  is the correlation function of f(t’). 

function P (a+ ,  8, t )  which is the solution to the initial value problem: 
The probabilistic properties of a+(t’) and O,(t’) can be inferred from the distribution 

dP/a t  = LP P(0,  a+, 8, a+,, 80) = 6(a+ -a+,)6(0 - 80). (14) 

Solving this equation and transforming back to original variables, the first and second 
moments of r+ can be calculated. These are 

2 2  

(r+(t’)) =exp (?Re S(&,-S(O))E~T cos [ ($-+ Im S(Ro))t’] 

i.e. on the slow timescale, the orbits on the average seem to shrink. Further the 
cyclotron frequency is renormalised by the presence of the field fluctuations. This shift 
in the frequency is given by ZE Ro Im S(R0). This frequency renormalisation and the 
decay of the first moment is the typical effect of fluctuations and occurs in many 
situations. 

Differentiating equation (15) with respect to time, it is at once evident that the 
velocity (dr+/dt) also decays exponentially. Further differentiation shows that, on the 
average, (d2r+/dt2) also decreases, i.e. there is no mean acceleration of the particle. 

1 2  2 

Computing the second moment, giving the variance of r+(r), one gets 

( r+(t)2)=iexp [ 2 ( R e  S(Ro)-2S(0))e2r] cos [ (%-,ImS!Rd)t] E 2 n ;  

+ exp [Rg Re S ( n , ) ~ ~ t ]  + . . . . (16) 

This shows that the variance grows exponentially on the slow timescale, with a growth 
rate determined by the power spectral density at the cyclotron frequency. From 
equation (16), the velocity second moment can be calculated by differentiating twice 
with respect to time. This immediately shows that the velocity second moment grows 
exponentially with time. As the kinetic energy is proportional to this moment, it can be 
seen that the average (executed over an ensemble of realisations of the magnetic field 
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fluctuations or over times large compared to the correlation period) energy of the 
particle increases exponentially. 

It should be noted that these results are only valid asymptotically and indicate a 
possible mechanism of energisation of charged particles by a stochastic magnetic field, 
both in the laboratory and in space. Since the collective effects have not been included 
in this analysis, this study should be helpful to understand the acceleration mechanism 
of charged particles when their number density is low enough. 

If one can also take the collective nature of the plasma into account, noise heating of 
the plasma for other applications can be seriously considered. The effects are being 
investigated. 

The diffusion equation (14) shows that in addition to velocity space diffusion, the 
configuration space diffusion also occurs in any realistic treatment. This point is totally 
lost if one ignores the induced electric field. In the present model, such an approxima- 
tion will show an average decrease of the velocity of the charged particle and no change 
in its average energy. This should be hardly surprising. These results are, in a sense, the 
best possible, at least from a mathematical point of view, as Khasminskii’s theorem is a 
natural generalisation of the central limit theorem of probability theory. It is hoped that 
the analysis presented above will regenerate the interest in stochastic energisation of 
particles in a more general context. 
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